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The Aerospace Corporation

e A California nonprofit corporation

e A Federally Funded Research and Deveiopment Center
(FFRDC)

e Chartered to provide support to the U.S. Government in
planning and acquisition of space and launch systems

e Employs ~3600 people, ~2300 technical staff
(~25% PhD, ~40% MS)

e Works on all DoD boosters and space systems

e Principal tasks: systems planning, systems engineering,
integration, and launch verification
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HCK 9/14/98

SETC
Space Weather Related Activities

Research

Design 'requirements and specifications
Source selection

Parts and materials testing

Test spécifications and analysis

Design Reviews

Independent Readiness Reviews
Anomaly analysis |

Education

3 THE AEROSPACE

CORPORATION



Space Instrumentation

Fully staffed instrumentation department
with engineers, technicians, facilities

Instrument design, fabrication, testing,
launch operations, and data processing

- Thermal vacuum test facilities, NASA-
approved assembly facilities

— Surface mount facility, vibration, etc.
— 24 engineers, 5 support staff

« Flight History
- 33 years building space instruments
186 flight experiments
68 satellites
25 sounding rocket flights

+ Ground-based and airborne experience
Customers
» NASA, NRO, DMSP, STP, commercial
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Overview of Internal Charging and
Aerospace Analyses

e History of Internal Charging

— Spacecraft Anomalies

— Spacecraft Measurements

— Laboratory ESD Tests
Internal Charging Environment for MAP
Comparison of Environment with AESMAX
Statistical Properties of CRRES MEA Measurements
Simulation Results for MAP Cable
Simulation Comparison for CRRES & MAP Cables
Concept of a “Safe Limit” and “Zero Discharge Level”
Recommendation
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Internal Charging Locations

e Internal charging may occur at
a variety of locations

Buried

inCIUding: charge

{electrons)

— dielectric isolators

— dielectrics in cable
harnesses

— printed circuit boards
— conformal coating

— isolated conductors such
as spot shields on ICs

-~ interior paint

" External
cable

Space and Environment Technology Center 73 THE AEROSPACE
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History of Internal Charging

e Spacecraft Anomalies
— DSP (1980 - 1982)
e Vampola, J. Electrostatics, 20, 21-30, 1987
— ANIK (Jan 20-21, 1994)
— Band B (Classified)
e Spacecraft Measurements
— SCATHA
* Pulse Analyzer (Aerospace)
e Transient Pulse Monitor (SRI)
— CRRES Internal Discharge Monitor
e Laboratory Measurements
— Coakley (1986)
— Mallon (1982)
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DSP Star-Sensor Anhomalies
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Band-B Anomaly Characteristics

At first turnon on orbit the signal from Band B on a classified
payload was degraded ~ -32 dB

Telemetry data indicated anomalous bias current for
preamplifier

— Supply current increased by 2 to 4 mA at the power
converter when the first stage was turned off

— Expected supply current to decrease by ~ 1 mA/ when
first stage is turned off

SPICE analysis for DC model of “burned out” preamp
matched telemetry data

— Modeled as a gate-to-source short
Failure occurred in four preamps in two identical fixed feeds

Space and Environment Technology Center @ THE AEROSPACE
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Root-Cause Analysis

e Many potential causes of the failure were investigated by
numerous Aerospace and contractor personnel

- ESD

— Antenna

— External RF (e. g. nearby radars)

-~ Lightning |

- “Welding” Incident

"= Interconnects

— Power supply lines

— Piece part quality

— Mechanical

— Many other causes enumerated on large fishbone diagram

° Most likely cause: ESD

— Internal charging in the feed electronics induced by passage of
the spacecraft through the Van Allen radiation belts: two 4-hour
charging periods per day

Space and Environment Technology Center | Ve /‘ THE AEROSPACE
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Preamplifier Damage Threshold Measurement

e 2 brassboard preamplifiers were tested to burned-out usmg
pulse-modulated rf to simulate ESD event pulses

— Pulse widths used were 100 ns and 10 ns to correspond
with the measured duration of the ESD events

e Compared damage threshold with energy in discharges from
beam tests

e Concluded that burnout from ESD events was probable
cause

L ]

Space and Environment Technology Center THE AEROSPACE
HCK 3/10/99 @ CORPORATION



-

ESD Opportunities

e Radome over feed is Kapton MLI, very close to top hat
— Shape dictated by integration needs
— No ESD bleed coating on radome

— Deep charging and surface charging methods being
analyzed

- Gathering orbital geomagnetic data

— Will calculate atmospheric charging during ascent
e Previous radome had large separation to feed

— No ESD bleed coating was used

— No history of ESD events or damage

L ]
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Feed Geometry

Cross-Sectional View

B-Cavity Balun (2 inputs not shown)

\

1 BR output

Solder Connection
Element to Coax

a\

=

B - Element (4)




-

Charging Experiments

e The basic idea

— Charge the feed with an electron beam having “realistic” energy
and flux and capture any discharge event signals at the output
of Band B

— Calculate the power and energy of any observed discharge
events

— Compare the energy in the discharge event with the measured
energy damage threshold for the preamplifier

e Problems

— Space charging environment has a continuous energy
distribution while Dynamitron electron beam is monoenergetic

- In space electrons come from all directions

'— Maximum flux obtainable over the energies required limited to
2.5 x 10”8 electrons/cm#2-sec; actual environment may exceed
this on rare occasions

L]
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Band-B Discharge Event

Run #29 BL - Flight S/N 005 No Mitigation

100} -

s0f -

0

50+ -

-00f - { L.

-150
190 210 230 250 270 230 310 330

time (ns)

Signal measured at the Band-B LH
polarization output

Amplitude 280 V peak-to-peak
Energy in 100 ns window 2300 nJ

Burnout threshold for discrete
MESFET is between 50 and 500 nJ
for 100 ns pulses -




Comparison of Laboratory Simulation
Environment with Space Environment

AESBMAX

— >350 keV average flux for orbit is 2.7 x 10° elec/cm?2-s
S/N 005

— Discharged at a fluence ~ 5 x 10° elec/cm?

— 1,800 s to discharge at AESBMAX level

GOES-7 measurements of > 2 MeV electrons at
geosynchronus orbit

— Average flux for several days after launch was > 2 x 104
elec/cm?2-s-sr

— Extremely high value (98th - 99th percentile)

Conclude that there was more than adequate time to have
damaging internal discharges in flight before turnon

Space and Environment Technology Center @ THE AEROSPACE
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Summary

e Anomalous performance of Band-B preamplifiers was noted
at first turn on

e SPICE modeling pointed toward burnout of the first stage
- MESFETS

e Root cause was determined to be ESD from internal charging
by testing conducted at JPL on engineering and spare units

e Mitigation efforts resulted in a timely fix for the next flight
with minimal system impact (but a lot of work)

Space and Environment Technology Center NTHE AEROSPACE
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Lessons Learned

e Design changes from previous programs require systems
tests and analyses

— One must be skeptical of “Qual by Similarity” without
adequate analysis

— Baseline requirements must be verified for new design

— Design changes should be tested if the environmental
effects cannot be clearly understood by analysis

e Survival requires proper materials selection and robust
circuit design and components

o “Off the shelf” hardware must be carefully analyzed to
assure that it is suitable for the intended application and
environment

e New requirements, materials and processes require a new
systems analysis

— e.g. Radome vs. Raflat

Space and Environment Technology Center THE AEROSPACE
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Anomaly Study for the DoD Space Architect
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Overview of Results

e 326 data forms are contained in the data collection

- Range from one occurrence to 617 occurrences per form
e 299 have cause diagnoSed as the space environment
e 155 have impacts obtained from the referenced documents

- Virtually none of the impacts are quantified in terms of
the cost of the impact

— It is possible to estimate the duration of the impact on a
user from 173 of the forms

— 137 have permanent degradation that may have impacted
users

e Loss of a subsystem

e Random part failure

e Mission or sensor degradation
e Solar array degradation

‘» Mission loss

Space and Environment Technology Center //‘\ THE AEROSPACE
&% CORPORATION
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Distribution of Forms by Anomaly Diagnosis

Diagnosis Number

ESD & Charging:

ESD - Internal Charging | 74

ESD - Surface Charging 59

ESD - Uncategorized 28

Surface Charging 1

Total: 162

SEUs:

SEU - Cosmic Ray 15

SEU - Solar Proton Event 9

SEU - South Atlantic Anomaly 20

SEU - Uncategorized 41

. Total: 85

Space and Environment Technology Center (@ E%ER%EROSPACE
HOK 101618 - ORATION




SCATHA Satellite

Air Force/Space Test Program research satellite

Measured the plasma environment

Monitored the electrostatic potential of representatwe
satellite surface materials

Measured the characteristics of the rf from electrostatac
discharges :

@ THE AEROSPACE
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CRRES Anomalies Compared with the Environment

Orbit
100 200 300 400 500 600 700 800 900 1000

>300 keV electron fiuence, 10 11 (cm2-sr)-1

IDM insulator pulses, events/orbit

MA - P homn __ma
All CRRES anomalies, events/orbit

J._.Al_uu.j.l_lllm | il .
10.7 MeV protonfluence 106 (cm2-sr)~ ’ l I“ 'W

MEP SEUs, 104 (SEUs/bit day)

!
1
W
H
i
1

30.5 keV relative electron fluence, (cm 2-sr)~1

“l | P LL“L DY ¥ GNPy |
Spacecraft potential >30 V, hours/orbit

L .A.j N i ‘LJL
Went 8 average temperature, ‘'C

ANV
[ w ] s [ i ! [ ‘ i
S 0] N D J F M A M
1st day on month, 1990-1991




- CRRES Internal Discharge Monitor
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Area Scaling for Surface Discharge
on a Dielectric
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Maximum Peak Current vs. Sample Area
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‘Area Scaling

e /... is the maximum peak current
e Koons

- In(1,, )=0.537In(Area) + 2.415981
— Area in cm?
e Elkman

- In(Z,,, )=0.575In(Area) +2.29253
— Areain cm?



Internal Charging Environment for MAP

by
Joe Fennell
Harry Koons
and
Mike McNab
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Integral Flux, electrons/cm”-s-sr

Maximum Average-Daily-Flux at L~6.6 -- March 28, 1991

Slope = -1.57 + 0.07
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| - Worst Case Integral Flux
8 All Sources (~ 0.4 to ~ 1.6 MeV)

2

Integral Flux, electrons/cm™-s-sr
»
]

v CRRES SEPS Y=(AX+B)X+C
A CRRES MEA A= - 0.098770
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(from CRRES SEP data)
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' Internal Charging Specification Spectra
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Concept of a “Zero Discharge Limit”
and a “Safe Flux Limit”

e Maximum fluence per orbit that did not produce a pulse from
the IDM samples on CRRES

— Orbital period was 10 hours

— Energies > 150 keV required to penetrate 0.02 cm (7.8
mils) of shielding

— “In this paper, the reported electron fluxes and fluences have been
summed over all energies and are those that are semi-isotropically
incident on the samples having been transmitted through the cover plate.”

e Zero Discharge Limit
— 2 x 1019 electrons / (cm? - orbit)

— Corresponds to an average electron flux of 5 x 10°
electrons / (cm? - sec)

e Safe Flux Limit

— “One might wish to add a safety factor and assume that
only fluxes below 1 x 10° electrons / (cm? - sec) are safe.”

e Applied to all IDM samples not just cables.
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Statistical Properties of CRRES MEA
Measurements
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AVG.XLS Chart 2

1400 keV Monthly Average and Maxima
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Comparison of Environment with AESMAX

by

Mike Redding
Mark Looper
and
Harry Koons
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Simulation Results for Map Cable
and Comparison for CRRES & MAP Cables

by
Mark Looper
and

Harry Koons

Space and Environment Technology Center @ THE AEROSPACE
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EGS4 (Electron-Gamma Shower) Monte Carlo Code

. Developed at Stanford Linear Accelerator Center (Nelson, Hirayama, and
Rogers, SLAC Report 265, 1985)

. Electromagnetic shower radiation transport code for electrons and positrons
down to 10 keV and gamma rays down to 1 keV (particles dropping below these
energies are assumed to stop locally)

. Fast in-line pseudo-random number generator to sample parameter space
with a Monte Carlo simulation (initial location, direction, and/or energy of incident
particles, random aspects of radiation transport)

. Full physics code, with separate interaction cross sections for different
materials and different processes (ionization energy loss, bremsstrahlung, delta ray
generation, pair production...), i.e., no need for “aluminum equivalent thickness”
and similar approximations

. Very flexible geometry (planes, cones, spheres, cylinders), input (different
particle types, continuum spectra or monoenergetic, beam or isotropic...), and
output (energy or charge deposit, path lengths, etc., particle by particle or summed
over regions) under control of programmer

. Well-benchmarked code, both in the literature (references in SLAC Report

265 or on the WWW at http://ehssun.lbl.gov/egs/egs.html) and in my own work
(against SHIELDOSE and against real detectors in a beta spectrometer)

. Several years of use at Aerospace, including simulations of sensors (MCP
and ICO dosimeters, SAMPEX/PET, MPTB/CPT and other telescopes), test setups
and instrumentation (Faraday cup, scattering foil, gamma cell), and electronics
boxes in the space environment
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Simulation of Incident Electron Directions

. EGS4 provides inline code for a “uniform deviate” (pseudo-random floating-point
numbers evenly distributed from zero to one) as its default random-number generator.

. For a simulated geometry like a cable that is infinite in one direction, a single sampling of
a uniform deviate lets us distribute incident particles uniformly across the cable, and another
sampling lets us distribute them uniformly in azimuth (projection of incidence direction into the
plane of the Mylar—headed along the cable or across it?).

. In a one-dimensionally infinite geometry, the problem is “degenerate” along the length of
the cable (it doesn’t matter where the particle strikes in that dimension), say the y direction, so
we can place all particles at y = 0 and just base normalizations on a unit length in y. In a two-
dimensionally infinite geometry the need to sample in azimuth and along the other infinite
dimension also disappears and we normalize to a unit area.

. In either case, we must still sample the angle of particles off normal incidence
(elevation):

Let @ be the angle between the cable (or rather, Mylar) normal and the particle incidence
direction. Then the solid angle covered by particles within d6 of this angle is

dQ = 27sinBd0 (this includes all azimuths), so de =4gx srfor 8 from zero to 7.

If the radiation environment to be simulated is an omnidirectional flux of J particles per
(cm? sec) illuminating one side of the geometry, then the directional flux is j=J/4x
particles per (cm? sec sr), and the number of particles per unit time striking a flat target of
area A from directions within d8 of 8 (which now only varies from zero to /2) is

dN = jAcosOdQ =2mjAcos8sin6d0 = ~mjAd(cos’ 8), so that N = IdN =mjA = JA/4.

A uniform sample of N in our Monte Carlo simulation, then, is equivalent to a uniform
sample of cosz(9=vz2 , where v, is the normal component of the particle’s unit velocity
vector. This is easily done by generating a sample of the uniform deviate and assigning
the square root of this as the value of v. Repetition of this procedure generates a

representative sample of isotropically incident particles striking a flat target, QEF.
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Electron integral spectrum, (cm? sec)™
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Region

Componen (vacuum)

1 Wire 1 -476

2 Wire 2 -450

3 Wire 3 -424

4 Wire 4 -396

5 Wire 5 -412

6 Wire 6 -445

7 Insulator 1 -30

8 Insulator 1 -41

9 Insulator 1 -104
10 Insulator 1 -33
11 Insulator 2 -23
12 Insulator 2 -45
13 Insulator 2 -9
14 Insulator 2 -32
15 Insulator 3 -19
16 Insulator 3 -29
17 Insulator 3 -106
18 Insulator 3 -34
19 Insulator 4 -16
20 Insulator 4 -46
21 Insulator 4 -127
22 Insulator 4 -38
23 Insulator 5 -26
24 Insulator 5 -46
25 Insulator 5 -117
26 Insulator 5 -41
27 Insulator 6 -32
28 Insulator 6 -49
29 Insulator 6 -103
30 Insulator 6 -47
31 Carrier Insi -352
32 Inner Binde -354
33 Shield -4635
34 Outer Bind -1398
35 Jacket -10765
36 Inner Binde -28
37 Shield -378
38 Outer Bind -109
39 Jacket -706
40 Inner Binde -52
41 Shield -229
42 Outer Bind -38
43 Jacket -129
44 \nner Binde -34
45 Shield -374
46 Quter Bind -73
47 Jacket -708
48 (buffer regi 0
49 (buffer regi 0
50 (buffer regqi 0
51 Mylar -12386

6 mil Cu
-168
-155
-162
-145
-162
-159

-6
-8
-29
-14
-6
-11
-43
-18
-8
-23
-42
-12
-7
-17
-32
-5
-7
-14
-42
-21
-12
-20
-43
-19
-112
-112
-1063
-190
-1348
-16
-100

-135

-120

0
0
-13237

mapsqare.xls

7.8 mil Cu 4 mil Pb

-115 -147
-114 -135
-113 -137
-107 -131
-119 -138
-118 -143
-7 -7
17 -9
-29 -23
-13 -10
-4 -11
-18 -2
-20 -33
13 -16
-8 -10
-3 -13
-22 -39
-2 -9
-8 -3
-13 -13
-31 22
-12 -9
-5 -1
-5 -13
-28 -34
-12 -14
-1 -11
-7 -10
-38 -22
-11 -6
-80 -103
-62 -37
-736 -807
-175 -184
-931 -1004
-15 -10
-71 -83
-11 17
-100 -105
-19 -12
-102 -90
-2 -9
-46 -80
-5 -12
-67 -88
-25 -22
-83 -91
0 0

0 0

0 0

-13412 -13830

09/07/1999



52 External St
53 External St
54 External St
55 External St
56 (discard re:

1 Wire 1

2 Wire 2

3 Wire 3

4 Wire 4

5 Wire 5

6 Wire 6
7+8+9+10 Insulator 1
11+12+134 Insulator 2
15+16+174 Insulator 3
19+20+214 Insulator 4
23+24+254 Insulator 5
27+28+294 Insulator 6
31 Carrier Ins!
32+36+404 Inner Binde

33+37+414 Shield
34+38+424 Quter Bind.

35+39+434 Jacket
52+53+544 External St

51 Mylar

1+E+56  (total cases

-100000

-16534
-807
-105
-775

-63568

-168
-155
-162
-145
-162
-159
-57
-78
-85
-61
-84
-94
-112
-164
-1340
-260
-1688
-18221
-13237
-100000

mapsqare.xls

-18100
-825
-93
-892
-63135

-115
-114
-113
-107
-119
-118

-66
-55
-35
-64
-50
-57
-80
-101
-976
-213
-1160
-19910
-13412
-100000

-12851
-576
-75
-646
-68097

-147
-135
-137
-131
-138
-143
-49
-62
-71
-47
-62
-49
-103
-71
-1068
-232
-1280
-14148
-13830
-100000

09/07/1999



EGS4 Simulation of MAP Cable
Square Geometry

No Extra Shield 7.8 mil Cu 4.0 mil Pb

Mylar 12386 13412 13830

Vacuum 63374 63135 68097

External Shield 0 18100 12851

Total Missing Cable 75760 94647 94778

Total Entering Cable 24240 5353 5222

Flux Entering Cable, 6.0 x 10° 1.32 x 10° 1.29 x 10°

elec/cm®-sec
Space and Environment Technology Center @ yz) ER‘?’ng?i'?lI\gﬁ
HCK 917199 :



Example Calculation of Flux into Cable

Number of electrons entering cable under 4 mil of Pb
— 5222 of 10° electrons

Integral omnidirectional flux above 50 keV in MAP spectrum
— J=4.28 x 107 elec / cm? - sec

Flux hitting 1 cm? area from one side
—~J/4=1.07x107 elec/ cm? - sec

Simulation area of Mylar MLl is 1.06 cm x 1 cm = 1.06 cm?

Simulation of 10° electrons striking Mylar corresponds to
natural flux in

— (105/1.06)/1.07 x 107 = 0.0088 sec
Simulation area of MAP cable = 0.46 cm?
Flux into cable under 4 mil of Pb shielding is
— 5222 /(0.46 x 0.0088) = 1.29 x 106 elec / cm? -sec

Space and Environment Technology Center THE AEROSPACE

CORPORATION



Material Properties

Material

Al

Cu

Pb

Space and Environment Technology Center
HCK 9/7/99

Density, g/cm’®

2,70

8.93

11.3

Z, Atomic Number

13

29

82

@

THE AEROSPACE
CORPORATION




EGS4 Simulation of Flat MAP Cable

External shield |(none) 6 milCu 7.8 milCu 4 milPb
(backscattered) | -24261  -32461 -32566 -41624
Mylar -15021 -17019 -17425. -18390
External shield 0 -37921 -40815 -30281
Jacket -27961 -3299 -2326 -2350
Binder -3877 -662 -466 -449
Internal shield -13270 -3040 -2148 -2259
Binder -1032 -290 -219 -214
Carrier insulation -1277 -366 -273 -328
Insulator -2366 -780 -535 -572
Wire -10022 -3734 -2892 -3145
Insulator -72 -44 -22 -38
Binder -37 -24 -11 -19
Internal shield -145 -64 -75 -72
Binder -28 -14 -10 -18
Jacket -43 -54 -41 -55
External shield 0 -72 -74 -49
(penetrating) -588 -156 -102 -137

Space and Environment Technology Center

HCK 9/7/99

@ THE AEROSPACE
CORPORATION



EGS4 Simulation of Flat RG316 Cable
with 0.02 cm (CRRES IDM Shielding)

(backscattered) -28965
0.02 cm Al -36827
Jacket -16377
Shield -14219
Insulator -1732
Steel wire -1643
Insulator -86
Shield -88
Jacket -4
(penetrating) -59
ng;:gagnd Environment Technology Center @ -él?) ER%EOR'?‘i_?lI\gs



Recommendations

e Shield cable with 4 mils of Pb tape behind 3 mils Mylar MLI

— Justification

e Best shielding per unit of added weight
— 4 mils of Pb is 0.65 the weight of 7.8 mils of Cu but shielding is
essentially identical
» Shielded cables on CRRES with less environmental
shielding survived over 800 orbits with no
discharges.

» Worst-case flux to MAP cable is 2.6 times “Zero
Discharge Level” for all IDM samples on CRRES

— Zero Discharge Level included many FR4 Epoxy Fiberglass
Boards that had a large number (> 1000) ESDs during the
CRRES mission.

e Perform MIL-STD-1541A Arc Discharge Test or equivalent at
system level to verify circuit immunity

Space and Environment Technology Center E%Enfgiggg_?/l\gﬁ

HCK 9/7/99 .
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